Explaining Animal Learning through Reinforcement Learning, Reward Parameterization, and Evolving World Models

Camila Blank

To begin...

Motivation

- Gain insight on the neural processes underlying a mouse's decision-making process in curiosity-driven navigation
- Combine reinforcement learning with multiple frameworks for intrinsic rewards
- Quantify contributions of extrinsic and intrinsic rewards, track an evolving world model, and observe effects on cohorts with stimulated neural circuits
- We focus on modeling the learning process itself rather than just learned behavior

Rosenberg et. al. "Mice in a labyrinth show rapid learning, sudden insight, and efficient exploration"

- Mice in labyrinths make about 2000 decisions per hour
- There is an "underlying search algorithm" that primarily explained by local turning rules, not a global memory of the maze
- Many mice experience sudden improvements, implying moments of insight about their environment

Mouse Maze Dataset

- Water-starved mice
 - Excitatory: C21
 - Control: saline
- Maze structure:
 - 127-node binary tree \rightarrow 3 possible actions
 - Four randomly alternating water ports
- Task structure:
 - 10 sessions (1/day)
 - 45 min each

Initial Analysis

 Number of steps to solve the maze converges quickly

 Mouse learning largely happens within first 100 trials / 90 min

Average Unique States per Trial (Smoothed, First 100 Trials)

Average Steps per Trial (Smoothed, First 100 Trials)

RL Basics: Markov Decision Processes

- Framework for sequential decision-making in unknown environments
- Next state is solely a function of the current state (Markov Property)
- Key components: state-action pairs, reward function, transition probabilities, discount factor

Standard algorithms

Q-learning (control):

• $Q(s,a) = Q(s,a) + \alpha \left(r + \gamma \max_{a'} Q(s', a') - Q(s, a)\right)$ (for each goal)

Epsilon decay:

- Epsilon-greedy action selection
 - Explore with probability epsilon, exploit with probability 1epsilon
- We start with a high epsilon and decay with every episode

Reward engineering

Uncertainty reward:

- Bayesian dynamics as world model
- Prior: $P(s'|s,a) \sim Dir(\alpha_1^{s,a},\alpha_2^{s,a},...,\alpha_{|s|}^{s,a})$
- $r_U^{t,k}(s, a, s') = \eta_U \cdot KL(P_{t,k}(s'|s, a) \parallel P_{t-1,k}(s'|s, a))$

Novelty reward:

• $r_N^{t,k}(s,a,s') = \eta_N \cdot \frac{1}{\sqrt{N(s')}}$

Combined:

- Total reward = uncertainty + novelty + extrinsic
- Epsilon decay

Details

Dirichlet distribution

"Distribution of distributions" (dice factory)

KL-divergence

- Measure of how different two distributions are
- Math: expected value of excess surprisal

Switching reward nodes

Q-table is num_states x num_actions x num_goals

$$f\left(x_1,\ldots,x_K;lpha_1,\ldots,lpha_K
ight) = rac{1}{\mathrm{B}(oldsymbol{lpha})}\prod_{i=1}^K x_i^{lpha_i-1}.$$

$$D_{\mathrm{KL}}(P \parallel Q) = \sum_{x \in \mathcal{X}} P(x) \, \log rac{P(x)}{Q(x)}.$$

Tuning hyperparameters via log-likelihood optimization

• Hyperparameters: η_N , η_U , γ , α , ε , ε -decay

• Minimize:
$$loss = -\frac{\sum_{j=1}^{N} \sum_{i=1}^{T_j} log \pi_j(a_{ij}|s_{ij})}{\# total \ timesteps}$$

• π_j = softmax policy for $Q_list[j]$ frozen after trial j with $\beta=1.0$

Uncertainty succeeds marginally

Discussion

- Results suggest that reducing uncertainty may be a source of intrinsic reward in mice
- Generally, Q-learning algorithms more effectively predict stimulated mouse behavior
- Next step is inverse reinforcement learning

 derive the reward parameterization from the ground truth data

Thank you!

(especially Aditi and the behavior modeling subgroup!)